LESSON PLAN | Discipline: | Semester: | Name of the Faculty: | |-------------------|--------------------------|---| | Mech. Engg. | Fifth (5 th) | Er Surya Kanta Kar | | Subject: | No. of days/week class | Semester from Date: 15.09.2022 to Date: 22.12.2022 | | Design of Machine | allotted: Five (5) | No. of Weeks: 15 | | Elements | | | | WEEK | CLASS DAY | THEORY TOPICS | | 1 ST | 1 ST | Introduction to machine design | | | 2 ND | Classification of Machine Design | | | 3 RD | Different materials used in Design | | | 4 TH | Working Stress, Ultimate Stress & Factor of Safety | | | 5 TH | Stress- Strain Diagram for MS & CI | | $2^{ m ND}$ | 1 ST | Factors affecting Machine Design | | | 2 ND | Cont | | | 3 RD | Design Procedure | | | 4 TH | Cont | | | 5 TH | Review Class | | | 1 ST | Joints and their classification | | nn. | 2 ND | State types of welded joints | | 3 RD | 3 RD | State advantages of welded joints over other joints | | | 4 TH | Design of welded joints for eccentric loads | | | 5 TH | Numerical on Welded Joint | | | 1 ST | Cont | | THE | 2 ND | Monthly Test- 1 | | 4 TH | 3 RD | State types of riveted joints and types of rivets | | | 4 TH | Describe failure of riveted joints | | | 5 TH | Determine strength & efficiency of riveted joints | | 5 TH | 1 ST | Design riveted joints for pressure vessel | | | 2 ND | Numerical on Riveted Joints | | | 3 RD | Cont | | | 4 TH | Cont | | | 5 TH | Cont | | | 1 ST | Review Class | | | 2 ND | State function of shafts | | | 3 RD | State materials for shafts | | 6 TH | 4 TH | Design solid & hollow shafts to transmit a given | | | | power at given rpm based on Strength: (i) Shear stress, | | | | (ii) Combined bending tension | | | 5 TH | State standard size of shaft as per I.S. | | 7 TH | 1 ST | Numerical on Shaft Design | | | 2 ND | Monthly Test- 2 | | | 3 RD | Numerical on Shaft Design | | | 4 TH | Numerical on Shaft Design | | | 5 TH | State function of keys & material of keys | | | 1 ST | Types of keys | |------------------|-----------------|--| | | 2 ND | Describe failure of key, effect of key way | | 8 TH | | Design rectangular sunk key considering its failure | | | 3 RD | against shear& crushing | | | 4 TH | Design rectangular sunk key considering its failure | | | | against crushing | | | 5 TH | Numerical on Key Design | | | 1 ST | Cont | | | 2 ND | Design rectangular sunk key by using empirical | | | | relation forgiven diameter of shaft | | 9 TH | 3 RD | Numerical on Key Design | | | 4 TH | State specification of parallel key, gib-head key, taper | | _ | | key as per I.S. | | | 5 TH | Review Class | | _ | 1 ST | Monthly Test- 3 | | | 2 ND | Shaft Coupling | | 10 TH | 3 RD | Requirements of a good shaft coupling | | | 4 TH | Types of Coupling | | | 5 TH | Design of Sleeve or Muff-Coupling | | | 1 ST | Numerical on Muff Coupling | | | 2 ND | Cont | | 11 TH | 3 RD | Design of Clamp or Compression Coupling | | | 4 TH | Numerical on Compression Coupling | | | 5 TH | Cont | | | 1 ST | Review Class | | | 2 ND | Materials used for helical spring | | 12 TH | 3 RD | Standard size spring wire. (SWG). | | | 4 TH | Terms used in compression spring | | | 5 TH | Stress in helical spring of a circular wire | | | 1 ST | Deflection of helical spring of circular wire | | | 2 ND | Surge in spring | | 13 TH | 3 RD | Numerical on design of spring | | | 4 TH | Cont | | | 5 TH | Cont | | | 1 ST | Monthly Test- 4 | | | 2 ND | Review Class | | 14 TH | 3 RD | Revision Class | | | 4 TH | Revision Class | | | 5 TH | Revision Class | | | 1 ST | Revision Class | | _ | 2 ND | Revision Class | | 15 TH | 3 RD | Revision Class | | | 4 TH | Revision Class | | | 5 TH | Revision Class |